Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Bull Exp Biol Med ; 170(5): 649-653, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1159147

ABSTRACT

Ivermectin (IVM) belongs to the class of macrocyclic lactones, which is used as an antiparasitic agent. At present, the researchers focus on possibility to use IVM in treatment of certain forms of cancer and viral diseases such as COVID-19. The mechanisms of IVM action are not clear. It is assumed that IVM affects chloride channels and increases cytoplasmic concentration of chloride. This study examines the effect of IVM on chloride currents induced by glycine (IGly). Experiments were carried out on isolated pyramidal neurons of the rat hippocampus with whole-cell patch clamp. A short-term (600 msec) application of IVM in a concentration of 10 µM induced a slow inward current, which persisted after washing the neurons. The low concentrations (0.1-1000 nM) of IVM did not induce any novel current, but it rapidly and reversibly reduced the peak amplitude and accelerated desensitization of IGly in a dose-dependent manner. The threshold concentrations of IVM sufficient to reduce peak amplitude of IGly and to accelerate desensitization of IGly were 100 nM and 0.1 nM, respectively. The study revealed a high sensitivity of neuronal glycine receptors to IVM.


Subject(s)
Chloride Channels/drug effects , Glycine/pharmacology , Ivermectin/pharmacology , Pyramidal Cells/drug effects , Action Potentials/drug effects , Animals , Antiviral Agents/pharmacology , Cells, Cultured , Chloride Channels/metabolism , Dose-Response Relationship, Drug , Hippocampus/cytology , Hippocampus/metabolism , Ion Channel Gating/drug effects , Patch-Clamp Techniques , Pyramidal Cells/physiology , Rats , Rats, Wistar , Receptors, Glycine/drug effects , Receptors, Glycine/metabolism
2.
Biomolecules ; 10(9)2020 09 21.
Article in English | MEDLINE | ID: covidwho-976281

ABSTRACT

We report the results of our in silico study of approved drugs as potential treatments for COVID-19. The study is based on the analysis of normal modes of proteins. The drugs studied include chloroquine, ivermectin, remdesivir, sofosbuvir, boceprevir, and α-difluoromethylornithine (DMFO). We applied the tools we developed and standard tools used in the structural biology community. Our results indicate that small molecules selectively bind to stable, kinetically active residues and residues adjoining them on the surface of proteins and inside protein pockets, and that some prefer hydrophobic sites over other active sites. Our approach is not restricted to viruses and can facilitate rational drug design, as well as improve our understanding of molecular interactions, in general.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Infections/drug therapy , Pandemics , Pneumonia, Viral/drug therapy , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/pharmacology , Angiotensin-Converting Enzyme 2 , Antibodies, Viral/immunology , Antigen-Antibody Reactions , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Betacoronavirus , Binding Sites , COVID-19 , Chloroquine/chemistry , Chloroquine/pharmacology , Coronavirus Infections/prevention & control , Drug Repositioning , Eflornithine/chemistry , Eflornithine/pharmacology , Humans , Hydrophobic and Hydrophilic Interactions , Ivermectin/chemistry , Ivermectin/pharmacology , L-Lactate Dehydrogenase/chemistry , L-Lactate Dehydrogenase/drug effects , Models, Molecular , Molecular Docking Simulation , Pandemics/prevention & control , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/drug effects , Pneumonia, Viral/prevention & control , Proline/analogs & derivatives , Proline/chemistry , Proline/pharmacology , Protein Binding , Protein Conformation , Protein Interaction Mapping , Receptors, Glycine/chemistry , Receptors, Glycine/drug effects , SARS-CoV-2 , Saposins/chemistry , Saposins/drug effects , Sofosbuvir/chemistry , Sofosbuvir/pharmacology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/drug effects , Structure-Activity Relationship , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL